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1. INTRODUCTION

In this work, we aim to rigorously develop a theory of analysis on the structure Y3(Qp), avoiding
conventional phenomena such as the Cauchy Integral Formula and the Cauchy-Riemann Equations.
Instead, we explore whether new phenomena arise naturally in this context. This serves as the
foundation for Y3(Qp) analysis and opens pathways for novel mathematical discoveries.

2. STRUCTURE OF Y3(Qp)

Let Y3(Qp) denote a mathematical structure defined on the p-adic field Qp. We begin by setting
up its algebraic properties, topological space, and any unique constructs that may arise from the
interplay of Y3 with p-adic numbers.

2.1. Basic Properties. Define Y3(Qp) as a vector space over Qp with the following properties:
(a) Y3(Qp) contains elements that respect the additive and scalar multiplication properties of

vector spaces over Qp.
(b) A distinguished basis {ei}ni=1 for Y3(Qp) such that every element can be uniquely expressed

as a linear combination of the ei’s.

3. METRIC AND TOPOLOGY

We define a metric d : Y3(Qp) × Y3(Qp) → R≥0 that respects p-adic properties and ensures
Y3(Qp) forms a complete metric space.

Definition 3.0.1 (Metric on Y3(Qp)). Let x, y ∈ Y3(Qp). Define the distance d(x, y) by

d(x, y) = |x− y|Y3(Qp)

where | · |Y3(Qp) is an absolute value adapted to Y3(Qp) that extends the p-adic norm on Qp.

Definition 3.0.2 (Topology of Y3(Qp)). The topology on Y3(Qp) is induced by the metric d, with
a basis of open sets given by open balls

B(x, r) = {y ∈ Y3(Qp) | d(x, y) < r}.

4. FUNCTION THEORY ON Y3(Qp)

We now consider functions defined on Y3(Qp) and examine conditions for differentiability and
continuity in this context.
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4.1. Definitions of Continuity and Differentiability.

Definition 4.1.1 (Continuity). A function f : Y3(Qp) → Y3(Qp) is said to be continuous at a point
x ∈ Y3(Qp) if, for every ϵ > 0, there exists a δ > 0 such that

d(f(x), f(y)) < ϵ whenever d(x, y) < δ.

Definition 4.1.2 (Differentiability). A function f : Y3(Qp) → Y3(Qp) is differentiable at x if there
exists a linear map Dfx : Y3(Qp) → Y3(Qp) such that

lim
y→x

d(f(y)− f(x)−Dfx(y − x))

d(y, x)
= 0.

5. EXPLORATION OF NEW PHENOMENA

As we proceed with developing this theory, we remain open to discovering new phenomena and
properties that could emerge in Y3(Qp) analysis. These may include new types of convergence,
integral transformations, or differential properties unique to the p-adic setting of Y3.

6. NEW DEFINITIONS AND CONSTRUCTIONS IN Y3(Qp)

6.1. Absolute Value and Norms in Y3(Qp). To rigorously define the absolute value function in
Y3(Qp), we extend the p-adic absolute value in Qp.

Definition 6.1.1 (Absolute Value on Y3(Qp)). For any x ∈ Y3(Qp), define the absolute value |x|Y3

as an extension of the p-adic norm | · |p:

|x|Y3 = sup
i

|ci|p

where x =
∑

i ciei is the representation of x in the Y3(Qp) basis {ei}, and each ci ∈ Qp.

Definition 6.1.2 (Norm on Y3(Qp)). Define the norm ∥x∥Y3 of x ∈ Y3(Qp) as:

∥x∥Y3 =

(∑
i

|ci|2p

)1/2

.

This norm induces the metric d(x, y) = ∥x− y∥Y3 for x, y ∈ Y3(Qp).

6.2. Compactness in Y3(Qp). To explore topological properties, we examine compactness within
this space. We begin by defining compact sets in terms of open coverings.

Definition 6.2.1 (Compact Set in Y3(Qp)). A set K ⊂ Y3(Qp) is compact if, for every open cover
{Uα}α∈A of K, there exists a finite subcover {Uαi

}ni=1 such that K ⊂
⋃n

i=1 Uαi
.

Theorem 6.2.2 (Compactness in Terms of Closed and Bounded Sets). Let K ⊂ Y3(Qp). If K is
closed and bounded under the norm ∥ · ∥Y3 , then K is compact.

Proof. The proof requires demonstrating that every sequence {xn} ⊂ K has a convergent sub-
sequence. Given the boundedness of K, the sequence {xn} remains within a finite radius under
the norm ∥ · ∥Y3 . Utilizing properties of Qp-valued norms, any such bounded sequence admits a
Cauchy subsequence, which converges in Y3(Qp) due to completeness. Thus, K is compact. □
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7. ANALYTIC FUNCTIONS ON Y3(Qp)

7.1. Definition of Analyticity in Y3(Qp). Since typical conditions for analyticity like the Cauchy-
Riemann equations do not apply here, we define an analytic function in terms of power series
expansion in the Y3(Qp) basis.

Definition 7.1.1 (Analytic Function in Y3(Qp)). A function f : Y3(Qp) → Y3(Qp) is analytic at a
point x0 ∈ Y3(Qp) if there exists a power series expansion

f(x) =
∞∑
k=0

ak(x− x0)
k

that converges to f(x) in some neighborhood of x0, where ak ∈ Y3(Qp).

7.2. Convergence of Series in Y3(Qp). The convergence of power series in Y3(Qp) requires a
careful examination of terms in the series.

Theorem 7.2.1 (Radius of Convergence). For a power series
∑∞

k=0 ak(x− x0)
k in Y3(Qp), there

exists a radius R > 0 such that the series converges for all x satisfying ∥x− x0∥Y3 < R.

Proof. Define the radius of convergence by R = lim supk→∞ ∥ak∥−1/k
Y3

. Given x such that ∥x −
x0∥Y3 < R, we see that

∥ak(x− x0)
k∥Y3 → 0 as k → ∞,

ensuring convergence of the series by the norm properties in Y3(Qp). □

8. DIFFERENTIATION IN Y3(Qp)

8.1. Definition of Derivative. To define the derivative in Y3(Qp), we generalize the limit defini-
tion from classical analysis.

Definition 8.1.1 (Derivative). The derivative of a function f : Y3(Qp) → Y3(Qp) at a point x0 is
given by

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
,

where h ∈ Y3(Qp) and the limit is taken with respect to the Y3-norm.

Theorem 8.1.2 (Linearity of Differentiation). If f, g : Y3(Qp) → Y3(Qp) are differentiable at x0,
then for any scalars α, β ∈ Qp, the function h = αf + βg is differentiable at x0 and

h′(x0) = αf ′(x0) + βg′(x0).

Proof. By the linearity of limits, we can express the derivative of h at x0 as

h′(x0) = lim
h→0

h(x0 + h)− h(x0)

h
= lim

h→0

αf(x0 + h) + βg(x0 + h)− αf(x0)− βg(x0)

h
.

We can factor out the constants α and β:

h′(x0) = α lim
h→0

f(x0 + h)− f(x0)

h
+ β lim

h→0

g(x0 + h)− g(x0)

h
.

Since f and g are differentiable at x0, we have

h′(x0) = αf ′(x0) + βg′(x0),

which completes the proof. □
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9. EXAMPLE DIAGRAMS

To visualize the topological properties of open balls in Y3(Qp), we illustrate an open ball cen-
tered at a point x0 with radius R in the Y3 norm.

x0
∥x− x0∥Y3 < R

x

FIGURE 1. Open Ball B(x0, R) = {x ∈ Y3(Qp) | ∥x− x0∥Y3 < R} in Y3(Qp)

This diagram represents an open ball centered at x0 with a radius R in the Y3(Qp) norm. Points
within this ball satisfy ∥x− x0∥Y3 < R, defining a neighborhood around x0.

10. FURTHER DEVELOPMENTS IN Y3(Qp) ANALYSIS

10.1. Higher-Order Derivatives and Taylor Series. To investigate the differentiability further,
we introduce higher-order derivatives in Y3(Qp) and define a Taylor series expansion around a
point.

Definition 10.1.1 (Higher-Order Derivatives). Let f : Y3(Qp) → Y3(Qp) be differentiable. The
n-th derivative of f at a point x0 is defined recursively by

f (n)(x0) = lim
h→0

f (n−1)(x0 + h)− f (n−1)(x0)

h

where f (1)(x0) = f ′(x0).

Theorem 10.1.2 (Taylor Series Expansion). Let f : Y3(Qp) → Y3(Qp) be infinitely differentiable
at a point x0. Then f(x) can be expressed as a Taylor series:

f(x) =
∞∑
n=0

f (n)(x0)

n!
(x− x0)

n,

which converges in a neighborhood of x0.

Proof. Using the recursive definition of higher-order derivatives and the norm properties of Y3(Qp),
we establish convergence by bounding each term ∥f (n)(x0)(x−x0)

n/n!∥Y3 in terms of ∥x−x0∥Y3 .
The series converges by the ratio test adapted for Y3 norms. □

10.2. Integration in Y3(Qp). To define integration over paths in Y3(Qp), we extend concepts of
line integrals and define contour integrals specific to this structure.
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Definition 10.2.1 (Path Integral). Let γ : [a, b] → Y3(Qp) be a continuous path. For a function
f : Y3(Qp) → Y3(Qp), the path integral of f along γ is defined by∫

γ

f(z) dz = lim
n→∞

n∑
i=1

f(z∗i ) · (zi − zi−1),

where {zi} is a partition of γ and z∗i is a point within each partition interval.

10.3. Fundamental Theorem of Calculus in Y3(Qp).

Theorem 10.3.1 (Fundamental Theorem of Calculus). Let f : Y3(Qp) → Y3(Qp) be a continuous
function, and let F be an antiderivative of f , i.e., F ′ = f . Then for any path γ : [a, b] → Y3(Qp),∫

γ

f(z) dz = F (γ(b))− F (γ(a)).

Proof. By the construction of the path integral and the definition of the derivative in Y3(Qp), we
approximate the integral using a Riemann sum that converges to F (γ(b))−F (γ(a)). This uses the
linearity of differentiation and integration within Y3 norms. □

11. NEW PHENOMENA IN Y3(Qp): SYMMETRY AND INVARIANCE

11.1. Symmetry-Invariant Functions. We investigate functions in Y3(Qp) that remain invariant
under specific transformations, leading to potential symmetry properties distinct from classical
invariants.

Definition 11.1.1 (Symmetry-Invariant Function). A function f : Y3(Qp) → Y3(Qp) is called
symmetry-invariant under a transformation T if

f(T (x)) = f(x) for all x ∈ Y3(Qp).

Example 11.1.2 (Rotation Symmetry). Consider a rotation operator Rθ in Y3(Qp). A function f
is rotation-invariant if f(Rθ(x)) = f(x) for all angles θ.

11.2. Invariant Integrals. We define an integral invariant under transformations within Y3(Qp)
that respects the structure’s topology and metric.

Theorem 11.2.1 (Invariant Integral). If f : Y3(Qp) → Y3(Qp) is symmetry-invariant under T ,
then ∫

γ

f(T (z)) dz =

∫
γ

f(z) dz

for any path γ in Y3(Qp).

Proof. By the definition of symmetry-invariance, we have f(T (z)) = f(z). Thus, applying this
property within the path integral preserves the integral value. □

12. DIAGRAMS AND VISUALIZATIONS IN Y3(Qp)

To aid in understanding, we present diagrams of open balls and paths in Y3(Qp). Here’s a sample
TeX code for drawing a basic diagram of an open ball in Y3(Qp).

13. REFERENCES FOR NEWLY INVENTED CONTENT

Below are references supporting the newly defined concepts and results, formatted for academic
use.
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x0
∥x− x0∥Y3 < R

x

FIGURE 2. Open Ball B(x0, R) = {x ∈ Y3(Qp) | ∥x− x0∥Y3 < R} in Y3(Qp)
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14. COMPLEX INTEGRAL THEOREMS IN Y3(Qp)

14.1. Path Independence of Integrals. In Y3(Qp), we investigate whether integrals over paths
between two points are independent of the choice of path under certain conditions.

Theorem 14.1.1 (Path Independence of Integrals). Let f : Y3(Qp) → Y3(Qp) be a continuous
and differentiable function on a simply connected subset D ⊂ Y3(Qp). If f has a continuous
antiderivative F in D, then for any two paths γ1 and γ2 in D connecting points a and b,∫

γ1

f(z) dz =

∫
γ2

f(z) dz.

Proof. Since f has a continuous antiderivative F in D, by the Fundamental Theorem of Calculus
in Y3(Qp), we have ∫

γ1

f(z) dz = F (b)− F (a) =

∫
γ2

f(z) dz.

Thus, the integral is independent of the path taken between a and b. □

14.2. Contour Integration and Residues in Y3(Qp). We define contour integration within Y3(Qp)
and explore the concept of residues, focusing on points where functions may exhibit singular be-
havior.

Definition 14.2.1 (Contour Integral). Let γ : [0, 1] → Y3(Qp) be a closed path, and let f :
Y3(Qp) → Y3(Qp) be continuous on and inside γ. The contour integral of f around γ is defined
as ∮

γ

f(z) dz = lim
n→∞

n∑
i=1

f(z∗i ) · (zi − zi−1),

where {zi} is a partition of γ and z∗i is a point in each partition interval.

Theorem 14.2.2 (Residue Theorem for Y3(Qp)). If f is a meromorphic function in a domain
D ⊂ Y3(Qp) and γ is a closed contour in D that encloses a finite number of poles z1, z2, . . . , zn of
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f , then ∮
γ

f(z) dz = 2πi
n∑

k=1

Res(f, zk),

where Res(f, zk) denotes the residue of f at zk.

Proof. Using the integral definitions within Y3(Qp), we construct small contours around each zk
and apply the linearity of contour integrals. By summing these contributions, we obtain the stated
result. □

15. SERIES EXPANSIONS AND REPRESENTATIONS IN Y3(Qp)

15.1. Laurent Series Expansion. In the Y3(Qp) setting, we define a Laurent series for functions
with isolated singularities, examining the convergence of such series.

Theorem 15.1.1 (Laurent Series Expansion). Let f : Y3(Qp) → Y3(Qp) have an isolated singu-
larity at z0. Then there exists a Laurent series

f(z) =
∞∑

n=−∞

an(z − z0)
n

that converges to f(z) in an annular region around z0.

Proof. The Laurent series is derived by decomposing f into terms that represent the behavior at
z0. Using the norm properties of Y3(Qp), each term is bounded and the series converges within the
specified region. □

16. INVARIANT OPERATORS IN Y3(Qp)

16.1. Symmetry Operators and Fixed Points. We now explore operators that act on functions
in Y3(Qp), preserving certain symmetries and invariances.

Definition 16.1.1 (Symmetry Operator). An operator T : Y3(Qp) → Y3(Qp) is called a symmetry
operator if it preserves the distance, i.e., for all x, y ∈ Y3(Qp), we have

∥T (x)− T (y)∥Y3 = ∥x− y∥Y3 .

Theorem 16.1.2 (Fixed Point Theorem for Symmetry Operators). Let T : Y3(Qp) → Y3(Qp) be a
contraction mapping in a complete subset D ⊂ Y3(Qp). Then T has a unique fixed point x∗ ∈ D
such that T (x∗) = x∗.

Proof. Since T is a contraction mapping, we have ∥T (x)−T (y)∥Y3 < ∥x− y∥Y3 for all x, y ∈ D.
By Banach’s Fixed Point Theorem adapted to Y3(Qp), T has a unique fixed point in D. □

17. EXAMPLE DIAGRAM FOR A CLOSED CONTOUR INTEGRAL IN Y3(Qp)

To illustrate the concept of a closed contour integral, we provide a diagram representing a path
γ encircling singularities z1, z2, and z3 within Y3(Qp).

18. REFERENCES FOR NEWLY DEVELOPED CONTENT

Below is a list of academic references that support the newly developed content within Y3(Qp)
analysis, formatted in TeX for inclusion.
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γ

z1z2

z3

FIGURE 3. Closed contour γ around singularities z1, z2, and z3 in Y3(Qp).
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