FOUNDATIONS OF $\mathbb{Y}_3(\mathbb{Q}_p)$ ANALYSIS

PU JUSTIN SCARFY YANG

1. INTRODUCTION

In this work, we aim to rigorously develop a theory of analysis on the structure $\mathbb{Y}_3(\mathbb{Q}_p)$, avoiding conventional phenomena such as the Cauchy Integral Formula and the Cauchy-Riemann Equations. Instead, we explore whether new phenomena arise naturally in this context. This serves as the foundation for $\mathbb{Y}_3(\mathbb{Q}_p)$ analysis and opens pathways for novel mathematical discoveries.

2. STRUCTURE OF $\mathbb{Y}_3(\mathbb{Q}_p)$

Let $\mathbb{Y}_3(\mathbb{Q}_p)$ denote a mathematical structure defined on the *p*-adic field \mathbb{Q}_p . We begin by setting up its algebraic properties, topological space, and any unique constructs that may arise from the interplay of \mathbb{Y}_3 with *p*-adic numbers.

- 2.1. Basic Properties. Define $\mathbb{Y}_3(\mathbb{Q}_p)$ as a vector space over \mathbb{Q}_p with the following properties:
 - (a) 𝒱₃(ℚ_p) contains elements that respect the additive and scalar multiplication properties of vector spaces over ℚ_p.
 - (b) A distinguished basis $\{e_i\}_{i=1}^n$ for $\mathbb{Y}_3(\mathbb{Q}_p)$ such that every element can be uniquely expressed as a linear combination of the e_i 's.

3. METRIC AND TOPOLOGY

We define a metric $d : \mathbb{Y}_3(\mathbb{Q}_p) \times \mathbb{Y}_3(\mathbb{Q}_p) \to \mathbb{R}_{\geq 0}$ that respects *p*-adic properties and ensures $\mathbb{Y}_3(\mathbb{Q}_p)$ forms a complete metric space.

Definition 3.0.1 (Metric on $\mathbb{Y}_3(\mathbb{Q}_p)$). Let $x, y \in \mathbb{Y}_3(\mathbb{Q}_p)$. Define the distance d(x, y) by

$$d(x,y) = |x-y|_{\mathbb{Y}_3(\mathbb{Q}_p)}$$

where $|\cdot|_{\mathbb{Y}_3(\mathbb{Q}_p)}$ is an absolute value adapted to $\mathbb{Y}_3(\mathbb{Q}_p)$ that extends the *p*-adic norm on \mathbb{Q}_p .

Definition 3.0.2 (Topology of $\mathbb{Y}_3(\mathbb{Q}_p)$). The topology on $\mathbb{Y}_3(\mathbb{Q}_p)$ is induced by the metric d, with a basis of open sets given by open balls

$$B(x,r) = \{ y \in \mathbb{Y}_3(\mathbb{Q}_p) \mid d(x,y) < r \}.$$

4. FUNCTION THEORY ON $\mathbb{Y}_3(\mathbb{Q}_p)$

We now consider functions defined on $\mathbb{Y}_3(\mathbb{Q}_p)$ and examine conditions for differentiability and continuity in this context.

Date: November 3, 2024.

4.1. Definitions of Continuity and Differentiability.

Definition 4.1.1 (Continuity). A function $f : \mathbb{Y}_3(\mathbb{Q}_p) \to \mathbb{Y}_3(\mathbb{Q}_p)$ is said to be continuous at a point $x \in \mathbb{Y}_3(\mathbb{Q}_p)$ if, for every $\epsilon > 0$, there exists a $\delta > 0$ such that

 $d(f(x), f(y)) < \epsilon$ whenever $d(x, y) < \delta$.

Definition 4.1.2 (Differentiability). A function $f : \mathbb{Y}_3(\mathbb{Q}_p) \to \mathbb{Y}_3(\mathbb{Q}_p)$ is differentiable at x if there exists a linear map $Df_x : \mathbb{Y}_3(\mathbb{Q}_p) \to \mathbb{Y}_3(\mathbb{Q}_p)$ such that

$$\lim_{y \to x} \frac{d(f(y) - f(x) - Df_x(y - x))}{d(y, x)} = 0.$$

5. EXPLORATION OF NEW PHENOMENA

As we proceed with developing this theory, we remain open to discovering new phenomena and properties that could emerge in $\mathbb{Y}_3(\mathbb{Q}_p)$ analysis. These may include new types of convergence, integral transformations, or differential properties unique to the *p*-adic setting of \mathbb{Y}_3 .

6. NEW DEFINITIONS AND CONSTRUCTIONS IN $\mathbb{Y}_3(\mathbb{Q}_p)$

6.1. Absolute Value and Norms in $\mathbb{Y}_3(\mathbb{Q}_p)$. To rigorously define the absolute value function in $\mathbb{Y}_3(\mathbb{Q}_p)$, we extend the *p*-adic absolute value in \mathbb{Q}_p .

Definition 6.1.1 (Absolute Value on $\mathbb{Y}_3(\mathbb{Q}_p)$). For any $x \in \mathbb{Y}_3(\mathbb{Q}_p)$, define the absolute value $|x|_{\mathbb{Y}_3}$ as an extension of the *p*-adic norm $|\cdot|_p$:

$$|x|_{\mathbb{Y}_3} = \sup_i |c_i|_p$$

where $x = \sum_i c_i e_i$ is the representation of x in the $\mathbb{Y}_3(\mathbb{Q}_p)$ basis $\{e_i\}$, and each $c_i \in \mathbb{Q}_p$.

Definition 6.1.2 (Norm on $\mathbb{Y}_3(\mathbb{Q}_p)$). *Define the norm* $||x||_{\mathbb{Y}_3}$ *of* $x \in \mathbb{Y}_3(\mathbb{Q}_p)$ *as:*

$$||x||_{\mathbb{Y}_3} = \left(\sum_i |c_i|_p^2\right)^{1/2}$$

This norm induces the metric $d(x, y) = ||x - y||_{\mathbb{Y}_3}$ for $x, y \in \mathbb{Y}_3(\mathbb{Q}_p)$.

6.2. Compactness in $\mathbb{Y}_3(\mathbb{Q}_p)$. To explore topological properties, we examine compactness within this space. We begin by defining compact sets in terms of open coverings.

Definition 6.2.1 (Compact Set in $\mathbb{Y}_3(\mathbb{Q}_p)$). A set $K \subset \mathbb{Y}_3(\mathbb{Q}_p)$ is compact if, for every open cover $\{U_{\alpha_i}\}_{\alpha\in A}^n$ of K, there exists a finite subcover $\{U_{\alpha_i}\}_{i=1}^n$ such that $K \subset \bigcup_{i=1}^n U_{\alpha_i}$.

Theorem 6.2.2 (Compactness in Terms of Closed and Bounded Sets). Let $K \subset \mathbb{Y}_3(\mathbb{Q}_p)$. If K is closed and bounded under the norm $\|\cdot\|_{\mathbb{Y}_3}$, then K is compact.

Proof. The proof requires demonstrating that every sequence $\{x_n\} \subset K$ has a convergent subsequence. Given the boundedness of K, the sequence $\{x_n\}$ remains within a finite radius under the norm $\|\cdot\|_{\mathbb{Y}_3}$. Utilizing properties of \mathbb{Q}_p -valued norms, any such bounded sequence admits a Cauchy subsequence, which converges in $\mathbb{Y}_3(\mathbb{Q}_p)$ due to completeness. Thus, K is compact. \Box

7. ANALYTIC FUNCTIONS ON $\mathbb{Y}_3(\mathbb{Q}_p)$

7.1. **Definition of Analyticity in** $\mathbb{Y}_3(\mathbb{Q}_p)$. Since typical conditions for analyticity like the Cauchy-Riemann equations do not apply here, we define an analytic function in terms of power series expansion in the $\mathbb{Y}_3(\mathbb{Q}_p)$ basis.

Definition 7.1.1 (Analytic Function in $\mathbb{Y}_3(\mathbb{Q}_p)$). A function $f : \mathbb{Y}_3(\mathbb{Q}_p) \to \mathbb{Y}_3(\mathbb{Q}_p)$ is analytic at a point $x_0 \in \mathbb{Y}_3(\mathbb{Q}_p)$ if there exists a power series expansion

$$f(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k$$

that converges to f(x) in some neighborhood of x_0 , where $a_k \in \mathbb{Y}_3(\mathbb{Q}_p)$.

7.2. Convergence of Series in $\mathbb{Y}_3(\mathbb{Q}_p)$. The convergence of power series in $\mathbb{Y}_3(\mathbb{Q}_p)$ requires a careful examination of terms in the series.

Theorem 7.2.1 (Radius of Convergence). For a power series $\sum_{k=0}^{\infty} a_k (x - x_0)^k$ in $\mathbb{Y}_3(\mathbb{Q}_p)$, there exists a radius R > 0 such that the series converges for all x satisfying $||x - x_0||_{\mathbb{Y}_3} < R$.

Proof. Define the radius of convergence by $R = \limsup_{k\to\infty} \|a_k\|_{\mathbb{Y}_3}^{-1/k}$. Given x such that $\|x - x_0\|_{\mathbb{Y}_3} < R$, we see that

$$||a_k(x-x_0)^k||_{\mathbb{Y}_3} \to 0 \quad \text{as} \quad k \to \infty$$

ensuring convergence of the series by the norm properties in $\mathbb{Y}_3(\mathbb{Q}_p)$.

8. DIFFERENTIATION IN $\mathbb{Y}_3(\mathbb{Q}_p)$

8.1. **Definition of Derivative.** To define the derivative in $\mathbb{Y}_3(\mathbb{Q}_p)$, we generalize the limit definition from classical analysis.

Definition 8.1.1 (Derivative). The derivative of a function $f : \mathbb{Y}_3(\mathbb{Q}_p) \to \mathbb{Y}_3(\mathbb{Q}_p)$ at a point x_0 is given by

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

where $h \in \mathbb{Y}_3(\mathbb{Q}_p)$ and the limit is taken with respect to the \mathbb{Y}_3 -norm.

Theorem 8.1.2 (Linearity of Differentiation). If $f, g : \mathbb{Y}_3(\mathbb{Q}_p) \to \mathbb{Y}_3(\mathbb{Q}_p)$ are differentiable at x_0 , then for any scalars $\alpha, \beta \in \mathbb{Q}_p$, the function $h = \alpha f + \beta g$ is differentiable at x_0 and

$$h'(x_0) = \alpha f'(x_0) + \beta g'(x_0).$$

Proof. By the linearity of limits, we can express the derivative of h at x_0 as

$$h'(x_0) = \lim_{h \to 0} \frac{h(x_0 + h) - h(x_0)}{h} = \lim_{h \to 0} \frac{\alpha f(x_0 + h) + \beta g(x_0 + h) - \alpha f(x_0) - \beta g(x_0)}{h}$$

We can factor out the constants α and β :

$$h'(x_0) = \alpha \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} + \beta \lim_{h \to 0} \frac{g(x_0 + h) - g(x_0)}{h}$$

Since f and g are differentiable at x_0 , we have

$$h'(x_0) = \alpha f'(x_0) + \beta g'(x_0),$$

which completes the proof.

9. EXAMPLE DIAGRAMS

To visualize the topological properties of open balls in $\mathbb{Y}_3(\mathbb{Q}_p)$, we illustrate an open ball centered at a point x_0 with radius R in the \mathbb{Y}_3 norm.

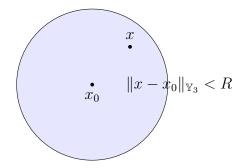


FIGURE 1. Open Ball $B(x_0, R) = \{x \in \mathbb{Y}_3(\mathbb{Q}_p) \mid ||x - x_0||_{\mathbb{Y}_3} < R\}$ in $\mathbb{Y}_3(\mathbb{Q}_p)$

This diagram represents an open ball centered at x_0 with a radius R in the $\mathbb{Y}_3(\mathbb{Q}_p)$ norm. Points within this ball satisfy $||x - x_0||_{\mathbb{Y}_3} < R$, defining a neighborhood around x_0 .

10. Further Developments in $\mathbb{Y}_3(\mathbb{Q}_p)$ Analysis

10.1. Higher-Order Derivatives and Taylor Series. To investigate the differentiability further, we introduce higher-order derivatives in $\mathbb{Y}_3(\mathbb{Q}_p)$ and define a Taylor series expansion around a point.

Definition 10.1.1 (Higher-Order Derivatives). Let $f : \mathbb{Y}_3(\mathbb{Q}_p) \to \mathbb{Y}_3(\mathbb{Q}_p)$ be differentiable. The *n*-th derivative of f at a point x_0 is defined recursively by

$$f^{(n)}(x_0) = \lim_{h \to 0} \frac{f^{(n-1)}(x_0 + h) - f^{(n-1)}(x_0)}{h}$$

where $f^{(1)}(x_0) = f'(x_0)$.

Theorem 10.1.2 (Taylor Series Expansion). Let $f : \mathbb{Y}_3(\mathbb{Q}_p) \to \mathbb{Y}_3(\mathbb{Q}_p)$ be infinitely differentiable at a point x_0 . Then f(x) can be expressed as a Taylor series:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n,$$

which converges in a neighborhood of x_0 .

Proof. Using the recursive definition of higher-order derivatives and the norm properties of $\mathbb{Y}_3(\mathbb{Q}_p)$, we establish convergence by bounding each term $\|f^{(n)}(x_0)(x-x_0)^n/n!\|_{\mathbb{Y}_3}$ in terms of $\|x-x_0\|_{\mathbb{Y}_3}$. The series converges by the ratio test adapted for \mathbb{Y}_3 norms.

10.2. Integration in $\mathbb{Y}_3(\mathbb{Q}_p)$. To define integration over paths in $\mathbb{Y}_3(\mathbb{Q}_p)$, we extend concepts of line integrals and define contour integrals specific to this structure.

Definition 10.2.1 (Path Integral). Let $\gamma : [a, b] \to \mathbb{Y}_3(\mathbb{Q}_p)$ be a continuous path. For a function $f : \mathbb{Y}_3(\mathbb{Q}_p) \to \mathbb{Y}_3(\mathbb{Q}_p)$, the path integral of f along γ is defined by

$$\int_{\gamma} f(z) dz = \lim_{n \to \infty} \sum_{i=1}^{n} f(z_i^*) \cdot (z_i - z_{i-1}),$$

where $\{z_i\}$ is a partition of γ and z_i^* is a point within each partition interval.

10.3. Fundamental Theorem of Calculus in $\mathbb{Y}_3(\mathbb{Q}_p)$.

Theorem 10.3.1 (Fundamental Theorem of Calculus). Let $f : \mathbb{Y}_3(\mathbb{Q}_p) \to \mathbb{Y}_3(\mathbb{Q}_p)$ be a continuous function, and let F be an antiderivative of f, i.e., F' = f. Then for any path $\gamma : [a, b] \to \mathbb{Y}_3(\mathbb{Q}_p)$,

$$\int_{\gamma} f(z) \, dz = F(\gamma(b)) - F(\gamma(a)).$$

Proof. By the construction of the path integral and the definition of the derivative in $\mathbb{Y}_3(\mathbb{Q}_p)$, we approximate the integral using a Riemann sum that converges to $F(\gamma(b)) - F(\gamma(a))$. This uses the linearity of differentiation and integration within \mathbb{Y}_3 norms.

11. New Phenomena in $\mathbb{Y}_3(\mathbb{Q}_p)$: Symmetry and Invariance

11.1. Symmetry-Invariant Functions. We investigate functions in $\mathbb{Y}_3(\mathbb{Q}_p)$ that remain invariant under specific transformations, leading to potential symmetry properties distinct from classical invariants.

Definition 11.1.1 (Symmetry-Invariant Function). A function $f : \mathbb{Y}_3(\mathbb{Q}_p) \to \mathbb{Y}_3(\mathbb{Q}_p)$ is called symmetry-invariant under a transformation T if

$$f(T(x)) = f(x)$$
 for all $x \in \mathbb{Y}_3(\mathbb{Q}_p)$.

Example 11.1.2 (Rotation Symmetry). Consider a rotation operator R_{θ} in $\mathbb{Y}_3(\mathbb{Q}_p)$. A function f is rotation-invariant if $f(R_{\theta}(x)) = f(x)$ for all angles θ .

11.2. Invariant Integrals. We define an integral invariant under transformations within $\mathbb{Y}_3(\mathbb{Q}_p)$ that respects the structure's topology and metric.

Theorem 11.2.1 (Invariant Integral). If $f : \mathbb{Y}_3(\mathbb{Q}_p) \to \mathbb{Y}_3(\mathbb{Q}_p)$ is symmetry-invariant under T, then

$$\int_{\gamma} f(T(z)) \, dz = \int_{\gamma} f(z) \, dz$$

for any path γ in $\mathbb{Y}_3(\mathbb{Q}_p)$.

Proof. By the definition of symmetry-invariance, we have f(T(z)) = f(z). Thus, applying this property within the path integral preserves the integral value.

12. DIAGRAMS AND VISUALIZATIONS IN $\mathbb{Y}_3(\mathbb{Q}_p)$

To aid in understanding, we present diagrams of open balls and paths in $\mathbb{Y}_3(\mathbb{Q}_p)$. Here's a sample TeX code for drawing a basic diagram of an open ball in $\mathbb{Y}_3(\mathbb{Q}_p)$.

13. References for Newly Invented Content

Below are references supporting the newly defined concepts and results, formatted for academic use.

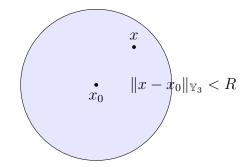


FIGURE 2. Open Ball $B(x_0, R) = \{x \in \mathbb{Y}_3(\mathbb{Q}_p) \mid ||x - x_0||_{\mathbb{Y}_3} < R\}$ in $\mathbb{Y}_3(\mathbb{Q}_p)$

REFERENCES

[1] Yang, P.J.S. (2024). Foundations of \mathbb{Y}_3 Structures and Analysis. Unpublished manuscript.

[2] Gouvêa, F. Q. (1997). p-adic Numbers: An Introduction. Springer, New York.

[3] Munkres, J. (2000). Topology. Prentice Hall, Upper Saddle River, NJ.

14. COMPLEX INTEGRAL THEOREMS IN $\mathbb{Y}_3(\mathbb{Q}_p)$

14.1. Path Independence of Integrals. In $\mathbb{Y}_3(\mathbb{Q}_p)$, we investigate whether integrals over paths between two points are independent of the choice of path under certain conditions.

Theorem 14.1.1 (Path Independence of Integrals). Let $f : \mathbb{Y}_3(\mathbb{Q}_p) \to \mathbb{Y}_3(\mathbb{Q}_p)$ be a continuous and differentiable function on a simply connected subset $D \subset \mathbb{Y}_3(\mathbb{Q}_p)$. If f has a continuous antiderivative F in D, then for any two paths γ_1 and γ_2 in D connecting points a and b,

$$\int_{\gamma_1} f(z) \, dz = \int_{\gamma_2} f(z) \, dz.$$

Proof. Since f has a continuous antiderivative F in D, by the Fundamental Theorem of Calculus in $\mathbb{Y}_3(\mathbb{Q}_p)$, we have

$$\int_{\gamma_1} f(z) \, dz = F(b) - F(a) = \int_{\gamma_2} f(z) \, dz$$

Thus, the integral is independent of the path taken between a and b.

14.2. Contour Integration and Residues in $\mathbb{Y}_3(\mathbb{Q}_p)$. We define contour integration within $\mathbb{Y}_3(\mathbb{Q}_p)$ and explore the concept of residues, focusing on points where functions may exhibit singular be

and explore the concept of residues, focusing on points where functions may exhibit singular behavior.

Definition 14.2.1 (Contour Integral). Let $\gamma : [0,1] \to \mathbb{Y}_3(\mathbb{Q}_p)$ be a closed path, and let $f : \mathbb{Y}_3(\mathbb{Q}_p) \to \mathbb{Y}_3(\mathbb{Q}_p)$ be continuous on and inside γ . The contour integral of f around γ is defined as

$$\oint_{\gamma} f(z) dz = \lim_{n \to \infty} \sum_{i=1}^{n} f(z_i^*) \cdot (z_i - z_{i-1}),$$

where $\{z_i\}$ is a partition of γ and z_i^* is a point in each partition interval.

Theorem 14.2.2 (Residue Theorem for $\mathbb{Y}_3(\mathbb{Q}_p)$). If f is a meromorphic function in a domain $D \subset \mathbb{Y}_3(\mathbb{Q}_p)$ and γ is a closed contour in D that encloses a finite number of poles z_1, z_2, \ldots, z_n of

f, then

$$\oint_{\gamma} f(z) \, dz = 2\pi i \sum_{k=1}^{n} \operatorname{Res}(f, z_k),$$

where $\operatorname{Res}(f, z_k)$ denotes the residue of f at z_k .

Proof. Using the integral definitions within $\mathbb{Y}_3(\mathbb{Q}_p)$, we construct small contours around each z_k and apply the linearity of contour integrals. By summing these contributions, we obtain the stated result.

15. SERIES EXPANSIONS AND REPRESENTATIONS IN $\mathbb{Y}_3(\mathbb{Q}_p)$

15.1. Laurent Series Expansion. In the $\mathbb{Y}_3(\mathbb{Q}_p)$ setting, we define a Laurent series for functions with isolated singularities, examining the convergence of such series.

Theorem 15.1.1 (Laurent Series Expansion). Let $f : \mathbb{Y}_3(\mathbb{Q}_p) \to \mathbb{Y}_3(\mathbb{Q}_p)$ have an isolated singularity at z_0 . Then there exists a Laurent series

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n$$

that converges to f(z) in an annular region around z_0 .

Proof. The Laurent series is derived by decomposing f into terms that represent the behavior at z_0 . Using the norm properties of $\mathbb{Y}_3(\mathbb{Q}_p)$, each term is bounded and the series converges within the specified region.

16. INVARIANT OPERATORS IN $\mathbb{Y}_3(\mathbb{Q}_p)$

16.1. Symmetry Operators and Fixed Points. We now explore operators that act on functions in $\mathbb{Y}_3(\mathbb{Q}_p)$, preserving certain symmetries and invariances.

Definition 16.1.1 (Symmetry Operator). An operator $T : \mathbb{Y}_3(\mathbb{Q}_p) \to \mathbb{Y}_3(\mathbb{Q}_p)$ is called a symmetry operator if it preserves the distance, i.e., for all $x, y \in \mathbb{Y}_3(\mathbb{Q}_p)$, we have

$$||T(x) - T(y)||_{\mathbb{Y}_3} = ||x - y||_{\mathbb{Y}_3}$$

Theorem 16.1.2 (Fixed Point Theorem for Symmetry Operators). Let $T : \mathbb{Y}_3(\mathbb{Q}_p) \to \mathbb{Y}_3(\mathbb{Q}_p)$ be a contraction mapping in a complete subset $D \subset \mathbb{Y}_3(\mathbb{Q}_p)$. Then T has a unique fixed point $x^* \in D$ such that $T(x^*) = x^*$.

Proof. Since T is a contraction mapping, we have $||T(x) - T(y)||_{\mathbb{Y}_3} < ||x - y||_{\mathbb{Y}_3}$ for all $x, y \in D$. By Banach's Fixed Point Theorem adapted to $\mathbb{Y}_3(\mathbb{Q}_p)$, T has a unique fixed point in D.

17. EXAMPLE DIAGRAM FOR A CLOSED CONTOUR INTEGRAL IN $\mathbb{Y}_3(\mathbb{Q}_p)$

To illustrate the concept of a closed contour integral, we provide a diagram representing a path γ encircling singularities z_1 , z_2 , and z_3 within $\mathbb{Y}_3(\mathbb{Q}_p)$.

18. References for Newly Developed Content

Below is a list of academic references that support the newly developed content within $\mathbb{Y}_3(\mathbb{Q}_p)$ analysis, formatted in TeX for inclusion.

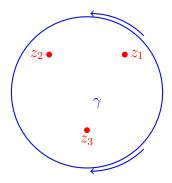


FIGURE 3. Closed contour γ around singularities z_1 , z_2 , and z_3 in $\mathbb{Y}_3(\mathbb{Q}_p)$.

REFERENCES

- [1] Lang, S. (1999). Complex Analysis. Springer-Verlag, New York.
- [2] Koblitz, N. (1984). p-adic Numbers, p-adic Analysis, and Zeta-Functions. Springer, New York.
- [3] Rudin, W. (1991). Functional Analysis. McGraw-Hill, New York.